

United Silicon Carbide, Inc.

Assembly Site Transfer Qualification Report

Discrete TO-220 SiC Diode Devices

Included Products:

TO-220-2L

UJ3D1202TS

UJ3D1205TS

UJ3D1210TS

UJ3D1210KS

UJ3D1220TS

UJ3D06504TS

UJ3D06506TS

UJ3D06508TS

UJ3D06510TS

UJ3D06512TS

UJ3D06516TS

UJ3D06520TS

UJ3D06530TS

This report summarizes the AEC-Q101 qualification results for an Assembly Site Transfer for United Silicon Carbide, Inc.'s UJ3D Discrete SiC Diodes in TO-220 plastic package.

The environmental stress tests listed below are performed with pre-stress and post-stress electrical tests. Reviewing the electrical results for new failures and any significant shift performance satisfies the AEC-Q101 qualification requirements, as well as UnitedSiC's Quality requirements.

Test Name	Test Standard # Samples x # Lots		Failures
High Temperature Reverse Bias (HTRB)	JESD22 A108 (1000 Hours) T _J =175°C, V _{DS} =960V,	77pcs x 3 lots	0/231
High Humidity High Temperature Reverse Bias (H3TRB)	JESD22 A-101D (1000 Hours) T _A =85°C/85%RH, V _{DS} =100V	77x3 lots	0/231
Intermittent Operating Life (IOL)	MIL-STD-750 Method 1037 DT」≥125°C, 3000 cycles (5 minutes on/ 5 minutes off)	77x3 lots	0/231
Temperature Cycle (TC)	JESD22 A-104 (1000 Cycles) -55°C to +150°C	77x3 lots	0/231
Autoclave (PCT)	JESD22 A-102 121°C/ RH = 100%, 96 hours, 15psig	77x3 lots	0/231
Parametric Verification	Per Datasheet	100% FT x 3 lots	
Physical Dimensions	Per AEC-Q101 Rev D 30x1 packages		0/30
Bondline Thickness	Per Assembly Spec	10x3 lots	0/30
Die Shear	Per Assembly Spec	10x3 lots	0/30
Die Attach Voids	Per Assembly Spec	10x3 lots	0/30

Wire Pull	Per Assembly Spec	10x3 lots	0/30
Wedge Shear	Per Assembly Spec	10x3 lots	0/30
CSAM	Per Assembly Spec	60x3lots	0/180
Lead Integrity Test	Tested in the Cascode Qual		
Solderability Test	Tested in the Cascode Qual		

Reliability Evaluation:

The FIT rate data presented below is determined according to JEDEC Standard JESD 85 and is determined from the HTRB and HTGB Burn-In sample size.

FIT = 5.216 failures per billion device hours

MTTF = 21885.5 years

From the equations:

$$\lambda_{hours} = \frac{X^{2}(\alpha, \nu)}{2 \times D \times H \times A_{f}}$$

$$FIT = \lambda_{hours} \times 10^{9}$$

$$MTTF_{hours} = \frac{1}{\lambda_{hours}}$$

And

$$A_f = e^{\frac{E_a}{k} \left(\frac{1}{T_{use}} - \frac{1}{T_{test}}\right)}$$

Where:

 X^2 = Chi-Squared probability function for a given Confidence Level (α) and Degree of Freedom (v = 2r + 2, where r = the number of failures in the Test Population),

D = Number of Devices in the Test Population,

H = Test Hours per Device,

A_f = Acceleration Factor from the Arrhenius equation,

United Silicon Carbide, Inc. www.UnitedSiC.com

E_a = Activation Energy (eV),

Tuse = standardized Use Temperature,

T_{test} = Temperature of Stress Test,

and

k = Boltzmann's Constant.

In our calculations, we used our HTGRB Burn-In data:

D = 231 devices for HTRB,

H = 1000 hours for HTRB,

 $1 - \alpha = 0.6$ (60% Confidence Level)

r = 0 Failures

 $E_a = 0.7 \text{ eV}$

 $T_{use} = 55$ °C or 328 K

 T_{test} = 175 °C or 448 K

United Silicon Carbide, Inc. Assembly Site Transfer/BoM Change Qualification Report

Discrete TO-247 SiC Stacked Cascode Devices

Included Products:

TO-247-4L TO-247-3L

UF3SC120009K4S

UF3SC120016K3S

This report summarizes the AEC-Q101 qualification results for an Assembly Site Transfer, and a Bill of Materials change for United Silicon Carbide, Inc.'s UF3SC Discrete SiC Cascode in TO-247-3L and TO-247-4L plastic package.

The environmental stress tests listed below are performed with pre-stress and post-stress electrical tests. Reviewing the electrical results for new failures and any significant shift performance satisfies the AEC-Q101 qualification requirements, as well as UnitedSiC's Quality requirements.

Test Name	MSL 1 PreCon	Test Standard	# Samples x # Lots	Failures
High Temperature Reverse Bias (HTRB)		JESD22 A108 (1000 Hours) T _J =175°C, V _{GD} =960V, Floating Source	77pcs x 3 lots	0/231
High Temperature Gate Bias (HTGB)		JESD22 A108 (1000 Hours) T _J =175°C, V _{GS} = -20V, V _{DS} = 0V	77pcs x 3 lots	0/231
High Humidity High Temperature Reverse Bias (H3TRB)	Y	JESD22 A-101D (500 Hours) $T_A=85^{\circ}\text{C}/85\%\text{RH, V}_{GD}=100\text{V,}$ Floating source	77x3 lots	0/231
Intermittent Operating Life (IOL)	Υ	MIL-STD-750 Method 1037 DT _J ≥125°C, 3000 cycles (5 minutes on/ 5 minutes off)	77x3 lots	0/231
Temperature Cycle (TC)	Y	JESD22 A-104 (1000 Cycles) -55°C to +150°C	77x3 lots	0/231
Autoclave (PCT)	Y	JESD22 A-102 121°C/ RH = 100%, 96 hours, 15psig	77x3 lots	0/231
Parametric Verification		Per Datasheet	100% FT x 3 lots	

Physical Dimensions	Per AE0	C-Q101 Rev D	30x1 packages	0/30
Bondline Thickness	Per As	ssembly Spec	10x3 lots	0/30
Die Shear	Per As	ssembly Spec	10x3 lots	0/30
Die Attach Voids	Per As	ssembly Spec	10x3 lots	0/30
Wire Pull	Per As	ssembly Spec	10x3 lots	0/30
Wedge Shear	Per As	ssembly Spec	10x3 lots	0/30
CSAM	Per As	ssembly Spec	60x3lots	0/180
Lead Integrity Test	Tested in t	he Cascode Qual	-1	
Solderability Test	Tested in t	he Cascode Qual		

Reliability Evaluation:

The FIT rate data presented below is determined according to JEDEC Standard JESD 85 and is determined from the HTRB and HTGB Burn-In sample size.

FIT = 2.608 failures per billion device hours

MTTF = 43771 years

From the equations:

$$\lambda_{hours} = \frac{X^2(\alpha, \nu)}{2 \times D \times H \times A_f}$$
 $FIT = \lambda_{hours} \times 10^9$
 $MTTF_{hours} = \frac{1}{\lambda_{hours}}$

And

$$A_f = e^{\frac{E_a}{k} \left(\frac{1}{T_{use}} - \frac{1}{T_{test}}\right)}$$

Where:

United Silicon Carbide, Inc. www.UnitedSiC.com

 X^2 = Chi-Squared probability function for a given Confidence Level (α) and Degree of Freedom (v = 2r + 2, where r = the number of failures in the Test Population),

D = Number of Devices in the Test Population,

H = Test Hours per Device,

A_f = Acceleration Factor from the Arrhenius equation,

 E_a = Activation Energy (eV),

T_{use} = standardized Use Temperature,

T_{test} = Temperature of Stress Test,

and

k = Boltzmann's Constant.

In our calculations, we used our HTGRB Burn-In data:

D = 231 devices for HTRB, and 231 devices for HTGB

H = 1000 hours for HTRB, and HTGB

 $1 - \alpha = 0.6$ (60% Confidence Level)

r = 0 Failures

 $E_a = 0.7 \text{ eV}$

 $T_{use} = 55$ °C or 328 K

T_{test} = 175 °C or 448 K

United Silicon Carbide, Inc. Site Transfer Qualification Report

Discrete TO-220-3L 650V Generation 3 Devices

Included Products:

Cascodes:

TO-220-3L

UJ3C065030T3S

UF3C065030T3S

UF3C065040T3S

UJ3C065080T3S

UF3C065080T3S

This report summarizes the Assembly site transfer qualification according to AEC-Q101 guidelines for our Generation 3 Discrete SiC Devices in TO-220-3L plastic packages.

The environmental stress tests listed below are performed with pre-stress and poststress electrical tests. Reviewing the electrical results for new failures and any significant shift in performance satisfies the qualification requirements.

Test Name	Test Standard	# Samples x # Lots	Test Result
High Temperature Reverse Bias (HTRB)	MIL-STD-750-1 M1038 Method A (1000 Hours) T _J =175°C, V=80% V _{max}	77x3 lots	Pass
High Temperature Gate Bias (HTGB)	JESD22 A-108 (1000 Hours) T _J =175°C, V=100% V _{max} (+20V), bias in one direction	77x3 lots	Pass
High Humidity, High Temperature Reverse Bias (H3TRB)	JESD22-A101C (1000 Hours) T _A =85°C, 85% RH, V _{GS} =0V, V _{DS} =100V	77x3 lots	Pass
Temperature Cycle (TC)	JESD22 A-104 -55°C to +150°C 2cycles/Hr (1000 Cycles)	77x3 lots	Pass
Autoclave (PCT)	JESD22 A-102 121°C/ RH = 100%, 96 hours, 15psig	77x3 lots	Pass
Intermittent Operating Life (IOL)	MIL-STD-750 Method 1037 DTJ ≥125°C, 3000 cycles (5 minutes on/ 5 minutes off)	77x3 lots	Pass
Parametric Verification	Per Datasheet	100% FT x 3 lots	Pass

United Silicon Carbide, Inc.

Site Transfer Qualification Report

Discrete TO-247-3L/4L 650/1200V Generation 3 Devices

Included Products:

Cascodes & JFETs:		Diodes:
TO-247-3L	TO-247-4L	TO-247-3L
UF3C170400K3S	UF3C120040K4S	UJ3D1210KS
UJ3C120040K3S	UF3C120080K4S	UJ3D1210KSD
UF3C120040K3S	UF3C120150K4S	UJ3D1220KSD
UJ3C120070K3S	UF3C065030K4S	UJ3D06520KSD
UJ3C120080K3S	UF3C065040K4S	UJ3D06560KSD
UF3C120080K3S	UF3C065080K4S	
UJ3C120150K3S		
UF3C120400K3S		
UJ3C065030K3S		
UF3C065030K3S		
UF3C065040K3S		
UJ3C065080K3S		
UF3C065080K3S		
UJ3N120035K3S		
UJ3N120065K3S		
UJ3N120070K3S		
UJ3N065025K3S		
UJ3N065080K3S		
UF3N120008K3S		

This report summarizes the Assembly site transfer qualification according to AEC-Q101 guidelines for our Generation 3 Discrete SiC Devices in TO-247-3L and TO-247-4L plastic packages.

The environmental stress tests listed below are performed with pre-stress and poststress electrical tests. Reviewing the electrical results for new failures and any significant shift in performance satisfies the qualification requirements.

Test Name	Test Standard	# Samples x # Lots	Failures
High Temperature Reverse Bias (HTRB)	MIL-STD-750-1 M1038 Method A (1000 Hours) T _J =175°C, V=80% V _{max}	77x3 lots	0/231
High Temperature Gate Bias (HTGB)	JESD22 A-108 (1000 Hours) $T_J = 175^{\circ}\text{C}, V = 100\% V_{\text{max}} (+20\text{V}), \text{bias in} \\ \text{one direction}$	77x3 lots	0/231
High Humidity, High Temperature Reverse Bias (H3TRB)	JESD22-A101C (1000 Hours) T _A =85°C, 85% RH, V _{GS} =0V, V _{DS} =100V	77x3 lots	0/231
Temperature Cycle (TC)	JESD22 A-104 -55°C to +150°C 2cycles/Hr (1000 Cycles)	77x3 lots	0/231
Autoclave (PCT)	JESD22 A-102 121°C/ RH = 100%, 96 hours, 15psig	77x3 lots	0/231
Intermittent Operating Life (IOL)	MIL-STD-750 Method 1037 DTJ ≥125°C, 3000 cycles (5 minutes on/ 5 minutes off)	77x3 lots	0/231
Parametric Verification	Per Datasheet	100% FT x 3 lots	
Physical Dimensions	Per AEC-Q101 Rev D	30x1 packages	0/30
Bondline Thickness	Per Assembly Spec	10x3 lots	0/30

Die Shear	Per Assembly Spec 10x3 lots		0/30
Die Attach Voids	Per Assembly Spec	10x3 lots	0/30
Wire Pull	Per Assembly Spec	10x3 lots	0/30
Wedge Shear	Per Assembly Spec	10x3 lots	0/30
CSAM	Per Assembly Spec	60x3 lots	0/180
Lead Integrity Test	Per AEC-Q101 Rev D	30x1 lots	0/30
Solderability Test	Per AEC-Q101 Rev D	10x1 lots	0/10

Reliability Evaluation:

The FIT rate data presented below is determined according to JEDEC Standard JESD 85 and is determined from the HTRB and HTGB Burn-In sample size.

FIT = 2.608 failures per billion device hours

MTTF = 43771.03 years

From the equations:

$$\lambda_{hours} = \frac{X^2(\alpha, \nu)}{2 \times D \times H \times A_f}$$
 $FIT = \lambda_{hours} \times 10^9$
 $MTTF_{hours} = \frac{1}{\lambda_{hours}}$

And

$$A_f = e^{\frac{E_a}{k} \left(\frac{1}{T_{use}} - \frac{1}{T_{test}}\right)}$$

Where:

 X^2 = Chi-Squared probability function for a given Confidence Level (α) and Degree of Freedom (v = 2r + 2, where r = the number of failures in the Test Population),

D = Number of Devices in the Test Population,

H = Test Hours per Device,

A_f = Acceleration Factor from the Arrhenius equation,

E_a = Activation Energy (eV),

T_{use} = standardized Use Temperature,

T_{test} = Temperature of Stress Test,

and

k = Boltzmann's Constant.

In our calculations, we used our HTGB and HTRB Burn-In data:

D = 231 for HTRB, and 231 for HTGB

H = 1000 hours of HTRB, and 1000 hours of HTGB

 $1 - \alpha = 0.6$ (60% Confidence Level)

r = 0 Failures

 $E_a = 0.7 \text{ eV}$

 $T_{use} = 55$ °C or 328 K

T_{test} = 175 °C or 448 K